Heterocycles in Organic Synthesis. Part 19. ${ }^{1}$ Thermolysis of Pyridinium \boldsymbol{N}-Acylimines: a New Preparation of Isocyanates ${ }^{2}$

By Alan R. Katritzky,* John Lewis, and Pai-Lin Nie, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ
2,4,6-Triphenylpyrylium perchlorate converts hydrazides into the 1 -amidopyridinium perchlorates (25) which are easily deprotonated to the free pyridinium 1 -acylimines (8). These are alternatively prepared by acylation of the 1 -amino-2,4,6-triphenylpyridinium cation. The 1 -acylimines undergo smooth thermolysis to 2,4,6-triphenylpyridine and the corresponding isocyanates, constituting a practical synthetic method for the latter. 1-Thioamidosalts (28) were prepared: the corresponding 1 -thioacylimines are unstable and decompose to the corresponding cyanides and sulphur.

Classical preparations of isocyanates (7) involve the rearrangement of anions (3) and (4) of N-halogenoamides (1) ${ }^{\mathbf{3}}$ or hydroxamic acids (2), ${ }^{4}$ or of acyl azides (5). ${ }^{5}$ In each of these species (3)-(5), X is a leaving group: other parts of this series ${ }^{6}$ have emphasised 2,4,6-triphenylpyridine as a good leaving group and the present paper describes a new synthesis of isocyanates based on the thermolysis of 2,4,6-triphenylpyridine N-acylimines (8).

(8)
(9) $R=P h$

Gibson and Murray ${ }^{7}$ and independently Smith and Briggs ${ }^{8}$ first observed the thermolysis of an amineimide of type $(11) \longrightarrow(10)$; the trimethyl derivative

(11) gave trimethylamine and phenyl isocyanate (isolated as trimer). Other amine-imides of type (11) rearrange to the acyltrialkylhydroazines (13); ${ }^{9}$ both reactions (11) $\longrightarrow(10)+(13)$ can occur simultaneously, ${ }^{10}$ in proportions which depend on steric factors. ${ }^{11}$

McKillip et al. ${ }^{12}$ first proposed reactions of trimethyl-amine-imides of type (11) as a preparative method for isocyanates: two isocyanates were isolated as monomers and the reaction was employed to produce polyfunctional isocyanates to initiate polymerisation. For related work see ref. 13 ; the field has been reviewed. ${ }^{14}$

The thermolysis of pyridine N-benzoylimide (14) and heteroaromatic analogues was studied by Tamura et al.: ${ }^{15}$ for example heating (14) at $190^{\circ} \mathrm{C}$ gave pyridine (27%) and diphenylurea (30%).

Preparation of N-Acylimines by Acylation.-We have previously described ${ }^{16}$ the benzoylation of 1-aminopyridinium iodide to give (14) (following Okamoto et al.) ${ }^{17}$ and we have now prepared the p-tolyl analogue (15) similarly.

2,4,6-Triphenylpyrylium perchlorate reacts with ethyl carbazate to give the N-(ethoxycarbamoyl) derivative (16) together with a by-product to which we have assigned a pyrazoline structure (17) on spectral evidence (see Experimental section). Similar results have been previously reported for benzenesulphonhydrazide. ${ }^{18}$ 1-Amino-2,4,6-trimethylpyridinium perchlorate (18) was made from t-butyl carbazate $\left(\mathrm{NH}_{2} \mathrm{NHCO}_{2} \mathrm{Bu}^{\mathrm{t}}\right)$ and 2,4,6-trimethylpyrylium perchlorate; loss of the t-butyl group and decarboxylation occurred during the reaction.

We also made the triphenyl analogue (19) analogously; however a better preparation of this l-amino-perchlorate (19) was found to be from the treatment of 1 -(2-pyridyl)-2,4,6-triphenylpyridinium perchlorate ${ }^{19}$ (20) with hydrazine. Direct reaction of hydrazine with 2,4,6-triarylpyrylium salts gives 1,2 -diazepines ${ }^{20}$ which are difficult to rearrange into the isomeric pyridine 1 -imine derivatives. ${ }^{21}$ Similar elimination of 2 -aminopyridine from (20) and reclosure to a new pyridine ring was achieved with aniline (in the presence of t-butyl-lithium) to give (21).

The amino-perchlorate (19) reacted with acetone, benzaldehyde, and 2,4-dichlorobenzaldehyde to give the

(16)

(18) $R=M e \quad$ (19) $R=P h$

(17)

(20) $R=2$-pyridyl
(21) $\mathrm{R}=\mathrm{Ph}$
imine perchlorates (22)-(24): similar compounds have been prepared from the 1 -aminopyridinium cation by Okamoto et al. ${ }^{22}$ In the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, the aminoperchlorate (19) underwent acylation by acid chlorides to yield a series of acylimines of type (8) (Table 1).

Preparation of N -Acylimines from Hydrazines.-2,4,6Triphenylpyrylium perchlorate reacts with acylhydrazines to yield the 1 -amidopyridinium perchlorates (25) (Table 2). Neidlein and Witerzens ${ }^{23}$ recently reacted $2,4,6$-trimethylpyrylium perchlorate with various acylhydrazines to give analogues of (25) (cf. also ref. 18). The perchlorates (25) are readily converted to the free

2,4,6-Triphenylpyrylium perchlorate and thiobenzhydrazide gave the 1 -thioamido-perchlorate, but this salt

(22) $R=R^{\prime}=M e$
(23) $R=H_{1} R^{\prime}=P h$
(24) $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
was unstable; in particular it decomposed on attempted deprotonation. It was therefore decided to pyrolyse the

(25) (26) $\mathrm{R}=\mathrm{Ph}$

(27)
salts directly, and our attention moved from the perchlorates to the analogous tetrafluoroborates. 2,4,6-Triphenylpyrylium tetrafluoroborate with a series of thio-

Table 1
Pyridine N-acylimides (8)

K	Method *	M.p. (${ }^{\circ} \mathrm{C}$)	Crystallisation solvent ${ }^{\text {b }}$	Yield (\%)	Formula	Found (\%)			Calc. (\%)		
						$\stackrel{\text { C }}{ }$	$\stackrel{-}{\mathrm{H}}$	N	$\stackrel{\sim}{C}$	$\xrightarrow{-}$	N
Me	A	209	Benzene	76	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$	82.5	5.6	7.4	82.4	5.4	7.6
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	B	174	Benzene	64	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$			7.2			7.1
Ph	A	204	Benzene	82	$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$	84.5	5.1	6.4	84.5	5.2	6.6
$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	A	201	Benzene	79	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$	84.2	5.5	6.4	84.5	5.5	6.4
$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	A	201	Benzene	78	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$	81.1	5.3	6.4	81.5	5.3	6.1
$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	B	186	Benzene	73	$\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$			5.7			6.0
PhCH_{2}	B	167	Benzene	85	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$			6.3			6.3
PhCH:CH	B	197	Benzene	66	$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$			6.0			6.1
$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	B	226	$\mathrm{CH}_{3} \mathrm{Cl}$	79	$\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$	75.9	4.6	9.0	76.4	4.4	8.7

${ }^{a}$ Method A by deprotonation of amido-perchlorates. Method B by acylation of N-amino-perchlorates. b All compounds crystallised as prisms.

1-acylimines (8) by base (Table 1). The t-butylimine (27) was made similarly from benzhydrazide and 2 -t-
acylhydrazines gave the corresponding 1 -thioamidotetrafluoroborates (28): these compounds decomposed

Table 2
N-Amidopyridinium perchlorates (25) ${ }^{a}$

R	M.p. (${ }^{\circ} \mathrm{C}$)	Yield (\%)	Formula	Found (\%)			Reqd. (\%)		
				$\stackrel{C}{C}$	H	N	C	H	N
Me	267	85	$\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{5}$	64.3	4.6	6.1	64.6	4.5	6.0
Ph	128	83	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{5}$	68.5	4.5	5.1	68.4	4.3	5.3
$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	245	66	$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5}$	68.3	4.7	5.0	68.8	4.6	5.1
$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	250	70	$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{6}$	66.3	4.6	5.2	66.8	4.4	5.0
	${ }^{\text {a }}$ All the	compoun	s crystallised	pris	rom	tO			

butyl-4,6-diphenylpyrylium perchlorate without isolation of the intermediate salt.
rapidly in solution and often could not be satisfactorily recrystallised or analysed (see Table 3).

Reaction of N-Acylimines with Amines.-We initially attempted to trap the isocyanates formed from thermo-

(28)
lytic reactions of type $(6) \longrightarrow(7)$ as ureas (30) by reaction with amines (29). Ureas were indeed obtained

In refluxing xylene, (14) gave the symmetrical urea with p-toluidine; no reaction occurred in refluxing toluene. By contrast, (9) reacted in toluene at $100^{\circ} \mathrm{C}$, but still gave a mixture of the symmetrical and unsymmetrical ureas.

Preparation of Isocyanates.-However, the N -acylimines (8) thermolysed smoothly to give excellent yields of the isocyanates which were characterised by i.r. spectroscopy and by reaction with aniline to give the corresponding unsymmetrical ureas (Table 5).

The present route complements the Curtius reaction

Table 3
Preparation and thermolysis of thioamidopyridinium tetrafluoroborates

R	Thiohydrazides (32)			Thioamidopyridinium tetrafluoroborates (28)						Nitriles (34)			
		Lit.										Li	
	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\mathrm{M} .}$	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Ref.	$\begin{aligned} & \text { M.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Crystal form	Yield (\%)	Formula	Found	$\begin{aligned} & (\%) \\ & \text { Reqd. } \end{aligned}$	Yield (\%)	$\begin{aligned} & \text { M.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { m.p. }}$	Ref.
Ph	67-70	72-73	a	$\begin{gathered} 122 \\ \text { (decomp.) } \end{gathered}$	Prisms	93	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{SBF}_{4}$			98	b		
$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	135-137	137-138	a	152 (decomp.)	Prisms	90	$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{SBF}_{4}$	5.3	5.1	99	$33{ }^{\text {c }}$	29.5	d
$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	124-126	125-126	a	$\begin{aligned} & 127 \\ & \text { (decomp.) } \end{aligned}$	Prisms	95	$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OBF}_{4}$			100	57°	59	f
$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	122-124	123-124	a	$\begin{aligned} & 158 \\ & \text { (decomp.) } \end{aligned}$	Prisms	95	$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{SBF}_{4}$	5.2	5.0	100	93	90	h

${ }^{a}$ K. A. Jensen and C. Pedersen, Acta Chem. Scand., 1961, 15, 1097. ${ }^{b}$ The nitrile was characterised by comparing the i.r. spectrum with the published spectrum, C. J. Pouchert, 'The Aldrich Library of Infrared Spectra,' Aldrich Chemical Co. Inc., 1970, p. 825.
${ }^{c}$ Footnote b, p. 827. ${ }^{\text {d ' Beilstein's Handbuch der Organischen Chemie', eds. B. Prager, P. Jacobson, P. Schmidt and D. Stern, }}$
Verlag von Julius Springer, Berlin, 1926, vol. 9. p. 489. ${ }^{e}$ Footnote b, p. 828 . ${ }^{f}$ Footnote $d, 1927$, vol. 10, p. 168. Footnote b, p. 827. ${ }^{n}$ Footnote d, p. 341.
(Table 4), but in most cases these were the symmetrical ureas (31) derived from two molecules of the added amine. Only with the hindered N-methylaniline, and the weakly basic 2 -aminopyridine were poorish yields of the corresponding unsymmetrical urea (30) obtained
for the formation of isocyanates. ${ }^{5}$ Although recently mild methods utilising $\mathrm{Me}_{3} \mathrm{SiN}_{3}{ }^{25}$ and diphenylphosphoryl azide ${ }^{26}$ have been developed, for cases in which the use of azides or nitrous acid in the preparation of the acid azide is a source of difficulty it could be the method

Table 4
Thermal reactions of N-acylimines with amines

Compound	$\underset{\mathrm{R}}{\mathrm{~N}}$	Amines	Moles of amine per mole of N -acylimine	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Product	$\begin{gathered} \text { Yield } \\ (\%) \end{gathered}$	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { Lit. m.p. }}$	Ref.
(14)	Ph	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$	3	190	2	$\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}\right)_{2} \mathrm{CO}$	75	264	263	a
	Ph	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$	1	190	2	$\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}\right)_{2} \mathrm{CO}$	79	234	234	b
	Ph	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$	3	190	1.5	$\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NH}\right)_{2} \mathrm{CO}$	75	$\begin{gathered} 270 \\ \text { (sublimed) } \end{gathered}$	275	c
	Ph	PhNHMe	5	190	3	PhNHCON(Me)Ph	20	(sublimed)	$\begin{aligned} & \text { sublimed) } \\ & 104-105 \end{aligned}$	d
$\begin{array}{r} (15) \\ (9) \end{array}$	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	PhNH_{2}	1	185	2	$(\mathrm{PhNH})_{2} \mathrm{CO}$	85	233-235	235	e
	Ph	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$	1	190	2	$\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}\right)_{2} \mathrm{CO}$	95	263	263	a
	Ph	$2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NNH}_{2}$	5	190	2	$\left(2-\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{NHCONHPh}$	50	187-189	185-186	f
	Ph	$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$	6	185	2	$\left(\mathrm{PhCH}_{2} \mathrm{NH}\right)_{2} \mathrm{CO}$	80	169	167	g

a 'Beilstein's Handbuch der Organischen Chemie', eds. B. Prager, P. Jacobson, P. Schmidt, and D. Stern, Verlag von Julius Springer, Berlin, 1929, vol. XII, p. 941. ''Beilstein's Handbuch der Organischen Chemie', ed. F. Richter, Second Supplement, Springer-Verlag, Berlin, 1950, vol. XIII, p. 252. ${ }^{〔}$ Footnote a, p. 615. ${ }^{\text {d D. G. Crosby and C. Niemann, J. Amer. Chem. Soc., 1954, }}$ 76, 4458. ' Footnote a, p. 352. f 'Beilstein's Handbuch der Organischen Chemie', ed. F. Richter, Second Supplement, SpringerVerlag, Berlin, 1953, vol. XXII, p. 330. ${ }^{\circ}$ Footnote a, p. 1051.
(Table 3). Similar results were reported ${ }^{7}$ for the thermolysis of (12) in p-bromoaniline. Amine-urea exchange reactions are well documented: ${ }^{24}$ they proceed less readily with hindered and weakly basic amines. ${ }^{24 d}$
of choice. The intermediate N-acylimines are stable crystalline compounds convenient to store.
Pyrolysis of 1-Thioamidopyridinium Salts (28).Treatment of the salts (28) with base led to complete decomposition. Thermolysis of the salts (28) with
triphenylpyridine gave the nitriles RCN by loss of sulphur (Table 3). Analogously thiatriazoles (33) [prepared from thiohydrazides (32)] thermolyse to

Table 5

Preparation of isocyanates by pyrolysis of 2,4,6-triphenylpyridinium N -acylimines (8) (at $220^{\circ} \mathrm{C}$ at 1 mmHg)

		Urea (RNHCONHPh)		
R in (8)	Yield (\%)	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Lit. m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Ref.
Me	95	148^{a}	$149-150$	c
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	94	115^{a}	$114-116$	d
Ph	86	212^{a}	$212-213{ }^{b}$	b
$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	95	212^{a}	$212-213$	e
$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	93	183^{a}	184	f
$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	89	234^{a}	$237-238$	g
PhCH_{2}	76	166^{a}	168	h
$\mathrm{PhCH}_{6} \mathrm{CH}$	90	219^{a}	217	i

${ }_{a}$ The isocyanate was reacted with aniline. ${ }^{b}$ The isocyanate was reacted with p-toluidine (in this case $\mathrm{R}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}$), 'Beilstein's Handbuch der Organischen Chemie', eds. B. Prager, P. Jacobson, P. Schmidt, and D. Stern, Verlag von Julius Springer, Berlin, 1929, vol. XII, p. 941. © Footnote b, p. 348. a'Beilstein's Handbuch der Organischen Chemie', ed. F. Richter, First Supplement, Verlag von Julius Springer, Berlin, 1933, vol. XII, p. 231. e Footnote b, p. 941. f A. F. M. Fahmy and S. A. Esawy, Indian J. Chem., 1973, 11, 871. ${ }^{g}$ Footnote b, p. 615. ${ }^{h}$ Footnote b, p. 1050. ${ }^{i}$ Footnote b, p. 355.
cyanide and sulphur (34). ${ }^{27}$ Attempts to react (28) with various amines did not yield significant amounts of thioureas: possibly the production of cyanide from both (28) and (33) involves three-membered ring intermediates of type (35).

EXPERIMENTAL

The following were prepared by the literature method quoted: pyridine N-benzoylimide, m.p. $177-179^{\circ} \mathrm{C}$ (lit., ${ }^{16}$ $179-180^{\circ} \mathrm{C}$).

Pyridine N -p-Tolylimide (15).-1-Aminopyridinium iodide and p-tolyl chloride gave, by the method reported for the benzoyl analogue, ${ }^{16}$ the imine (30%) which separated from benzene as prisms, m.p. $168-170{ }^{\circ} \mathrm{C}$ (Found: C, 73.1; $\mathrm{H}, 5.7$; $\mathrm{N}, 12.8 . \quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.5 ; \mathrm{H}, 5.6 ; \mathrm{N}$, 13.2%); $\nu_{\max }$ (Nujol) $3020,1620,1590,1550,1510$, $1400,1340,1300,1250,1210,1180,1100,1050,1020$, $980,950,900,860,840,760,750,680$, and $640 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{D}_{2} \mathrm{O} ; 60 \mathrm{MHz}\right) 8.9-7.6(9 \mathrm{H}, \mathrm{m})$ and $2.8(3 \mathrm{H}, \mathrm{s})$.

1-Ethoxycarbamoyl-2,4,6-triphenylpyridinium Perchlorate (16) and 1-Ethoxycarbonyl-3,5-diphenyl-5-phenacyl-2-pyrazoline (17).-Ethyl carbazate (3.06 g) and 2,4,6-triphenylpyrylium perchlorate (12.24 g) were refluxed 12 h in ethanol
(150 ml). Some perchlorate (16) separated on cooling, more was obtained by evaporation and treatment with ether. Evaporation of the ether gave the pyrazoline (17). The perchlorate (16) ($9.1 \mathrm{~g}, 61 \%$) formed prisms (from ethanol), m.p. $210-212{ }^{\circ} \mathrm{C}$ (Found: C, 62.9; H, 4.7; N, 5.5. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{6}$ requires C, 63.1; $\mathrm{H}, 4.7 ; \mathrm{N}, 5.7 \%$); $\nu_{\text {max. }}$ (Nujol) $3180-3140,1745,1620,1595,1575,1560$, $1490,1410,1260-1230,1120-1040,920,890,770$, and $750 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.00(2 \mathrm{H}, \mathrm{s}$, arom.), $7.95-7.25$ $\left(15 \mathrm{H}, \mathrm{m}\right.$, arom.), $4.0-3.6\left(2 \mathrm{H}, \mathrm{q}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, and 0.85 $\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. The pyrazoline (17) ($4.7 \mathrm{~g}, 39 \%$) (from dioxan-water) had m.p. $140-141{ }^{\circ} \mathrm{C}$ (Found: C, $75.3 ; \mathrm{H}, 5.8 ; \mathrm{N}, 6.7 . \quad \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.7 ; \mathrm{H}$, $5.8 ; \mathrm{N}, 6.8 \%$) ; $\nu_{\max .}$ (Nujol) 1700 (ketone $\mathrm{C}=\mathrm{O}$), 1680 (amide $\mathrm{C}=\mathrm{O}$), $1595,1500,1480,1450,1425,1365$, $1330,1315,1305,1255,1230,1210,1175,1110,1030$, $1015,1000,765,755,720,700$, and $690 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right)$ $8.15-7.10(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.40-3.50\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right)$, and $1.15\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

1-Amino-2,4,6-trimethylpyridinium Perchlorate (18) (with Dr. J. Suwinski).-t-Butyl carbazate (0.216 g) and 2,4,6trimethylpyrylium perchlorate (0.362 g) were refluxed in 95% ethanol (4 ml) for 4 h . On cooling the perchlorate separated; it crystallised as prisms (from ethanol), m.p. $178-180{ }^{\circ} \mathrm{C}$ (Found: N, 12.0. $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}$ requires N , $11.8 \%)$.
1-Amino-2,4,6-triphenylpyridinium Perchlorate (19).(i) t-Butyl carbazate (1.6 g), 2,4,6-triphenylpyrylium perchlorate $(4.08 \mathrm{~g})$, and amyl alcohol $(25 \mathrm{ml})$ were refluxed for 12 h . On cooling an oil precipitated: it was taken up in hot ethanol and on cooling gave the amino-perchlorate (19) ($0.5 \mathrm{~g}, 35 \%$) which separated from ethanol as prisms, m.p. 161-163 ${ }^{\circ} \mathrm{C}$ (Found: C, 65.2; H, 4.7; N, 6.6. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.4 ; \mathrm{H}, 4.5 ; \mathrm{N}, 6.3 \%$); $\nu_{\text {max. }}$ (Nujol) 3 340, $3280-3160,1620,1575,1530,1490$, $1410,1245-1230$, $1110-1060,770,725$, and $695 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 8.00-7.25(17 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $5.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$.
(ii) 1-(2-Pyridyl)-2,4,6-triphenylpyridinium perchlorate ${ }^{19}$ $(4.9 \mathrm{~g}, 0.01 \mathrm{~mol})$, hydrazine hydrate ($5 \mathrm{~g}, 0.15 \mathrm{~mol}$), and ethanol (50 ml) were refluxed for 4 h . A precipitate separated on cooling and was crystallised from ethanol to give the perchlorate (19) ($\mathbf{3 . 6} \mathrm{g}, 85 \%$), m.p. and mixed m.p. $161-163^{\circ} \mathrm{C}$.
Reaction of 1-(2-Pyridyl)-2,4,6-triphenylpyridinium Perchlorate with Aniline.-t-Butyl lithium (1.4 ml of 15% solution in pentane) was added to 1-(2-pyridyl)-2,4,6-triphenylpyridinium perchlorate ($1.79 \mathrm{~g}, 0.0035 \mathrm{~mol}$) in aniline (15 ml) and ether (15 ml). After stirring at $-10^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h}, 1,2,4,6$-tetraphenylpyridinium perchlorate (21) ($1.5 \mathrm{~g}, 87 \%$) separated, m.p. $261-163{ }^{\circ} \mathrm{C}$ (lit., ${ }^{28} 260{ }^{\circ} \mathrm{C}$).
N-(2,4,6-Triphenylpyridinio)benzylideneamine Perchlorate (23).-Trimethylamine $(0.10 \mathrm{~g})$ was added to 1 -amino-2,4,6-triphenylpyridinium perchlorate (0.42 g) and benzaldehyde $(0.106 \mathrm{~g})$ in dichloromethane (10 ml) and the mixture stirred 6 h at $20^{\circ} \mathrm{C}$. Ether then precipitated the imine perchlorate (23) ($0.35 \mathrm{~g}, 70 \%$) which after recrystallisation from methanol had m.p. $226-228{ }^{\circ} \mathrm{C}$ (Found: C , $70.0 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.5 . \quad \mathrm{C}_{30} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.5 ; \mathrm{H}$, $4.5 ; \mathrm{N}, 5.5 \%$); $\nu_{\text {max. }}$ (Nujol) $1620,1600,1595,1560$, $1490,1450,1415,1240,1225,1110-1070,840,770$, $760,745,700$, and $685 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3} ; 60 \mathrm{MHz}\right) 8.65(1 \mathrm{H}$, s), $7.95(2 \mathrm{H}, \mathrm{s})$, and $7.90-7.60(20 \mathrm{H}, \mathrm{m}) ; \delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$; $60 \mathrm{MHz}) 8.35(2 \mathrm{H}, \mathrm{s})$ and $8.20-7.20(21 \mathrm{H}, \mathrm{m})$.

The following were similarly prepared: $\mathrm{N}-(2,4,6-t r i-$ phenylpyridinio)-2,4-dichlorobenzylideneamine (24) (67\%),
m.p. $194-195{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 61.8; H, 3.6; $\mathrm{N}, 4.8$. $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $62.1 ; \mathrm{H}, 3.6 ; \mathrm{N}, 4.8 \%$); $\nu_{\max }$ (Nujol) $1620,1600,1580,1570,1490,1415,1110-$ $1070,885,760,730$, and $690 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} ; 60 \mathrm{MHz}\right)$ $8.72(1 \mathrm{H}, \mathrm{s}), 8.25(2 \mathrm{H}, \mathrm{s})$, and $8.1-7.0(18 \mathrm{H}, \mathrm{m})$; $\delta\left(\mathrm{CDCl}_{3} ; 60 \mathrm{MHz}\right) 8.85(1 \mathrm{H}, \mathrm{s})$ and $8.10-7.10(20 \mathrm{H}, \mathrm{m})$, and -isopropylideneamine (22) (75\%) (prepared in aqueous acetone solvent), m.p. $182-186{ }^{\circ} \mathrm{C}$ (from methanol) (Found: N, 5.8. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{ClO}_{4}$ requires $\mathrm{N}, 6.0 \%$); $\nu_{\text {max. }}$ (Nujol) 1630 , $1615,1595,1575$, 1560 , 1540 , 1490 , 1415 , 1235 , $1185,1110-1070,880,795,760,750$, and $695 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} ; 60 \mathrm{MHz}\right) 8.25(2 \mathrm{H}, \mathrm{s}), 8.15-7.5(15 \mathrm{H}, \mathrm{m})$, $1.90(3 \mathrm{H}, \mathrm{s})$, and $1.68(3 \mathrm{H}, \mathrm{s})$.

2,4,6-Triphenylpyridine 1-Acylimines (8) by Acylation (Procedure B of Table 1).-Potassium carbonate (0.28 g , 0.002 mol) was added to 1 -amino-2,4,6-triphenylpyridinium perchlorate ($0.4 \mathrm{~g}, 0.001 \mathrm{~mol}$) in acetone (5 ml) and water $(1 \mathrm{ml})$, with stirring. After 10 min , the acid chloride (0.001 mol) in acetone (3 ml) was added at $20^{\circ} \mathrm{C}$ and the whole stirred for 1 h . Volatiles were evaporated at $40{ }^{\circ} \mathrm{C}$ at 15 mmHg , water (20 ml) and chloroform (50 ml) were added. The dried $\left(\mathrm{MgSO}_{4}\right)$ chloroform layer was evaporated and the residue crystallised from benzene.

1-Amido-2,4,6-triphenylpyridinium Perchlorates (25).-2,4,6-Triphenylpyrylium perchlorate (0.01 mol), the acid hydrazide (0.012 mol), and ethanol (40 ml) were refluxed for 24 h . On cooling and addition of ether the perchlorate separated and was crystallised from ethanol (for details see Table 2).

2,4,6-Triphenylpyridine 1-Acylimines (8) (Method A of Table 1).-The perchlorate (25) (0.005 mol) in methanol $(10 \mathrm{ml})$ was treated with potassium hydroxide (0.0055 mol) in methanol (5 ml) at $20^{\circ} \mathrm{C}$. After stirring 20 min , the solution was filtered and the filtrate evaporated to give the imine which crystallised from benzene (for details see Table 1).

2-t-Butyl-4,6-diphenylpyridine N -Benzoylimide (27).Benzhydrazide ($3.12 \mathrm{~g}, 0.023 \mathrm{~mol}$) and 2-t-butyl-4,6-diphenylpyrylium perchlorate ($9.2 \mathrm{~g}, 0.023 \mathrm{~mol}$) were converted by application of the general method for the preparation of (25) and method A for preparation of (8) into the t-butyl imine ($2.8 \mathrm{~g}, 30 \%$), which formed as prisms, m.p. $207-209{ }^{\circ} \mathrm{C}$ (from benzene) (Found: C, 82.8; H, 6.6; N, 6.7. $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 82.7 ; \mathrm{H}, 6.4 ; \mathrm{N}, 6.8 \%$); $\nu_{\text {max. }}$ (Nujol) $1620,1600,1560,1460,1405,1330,1340$, 1300 , 1220,1150 , 1190,1080 , 1060 , $1020,905,880,800$, $750-780,710$, and $700 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3} ; 60 \mathrm{MHz}\right) 8.4-7.4$ ($17 \mathrm{H}, \mathrm{m}$) and $2.1(9 \mathrm{H}, \mathrm{s})$.

1-Thioamido-2,4,6-triphenylpyridinium Tetrafuoroborates (28).-2,4,6-Triphenylpyrylium tetrafluoroborate (0.01 mol) and the thiohydrazide (0.015 mol) were stirred in ethanol $(150 \mathrm{ml})$ for 4 h at $20^{\circ} \mathrm{C}$. The tetrafluoroborate separated (see Table 3).

Pyrolysis of 2,4,6-Triphenylpyridine N -Acylimines (8) (Table 4). -The N-acylimine (0.01 mol) was dried for 5 h at $90{ }^{\circ} \mathrm{C}$ at 0.5 mmHg . It was then heated in an oil bath rapidly to $150{ }^{\circ} \mathrm{C}$ then gradually to $220{ }^{\circ} \mathrm{C}$ either at $0.5-2$ or $12-15 \mathrm{mmHg}$ in a distillation apparatus cooled in liquid nitrogen. The isocyanate distilled over at temperatures from $150{ }^{\circ} \mathrm{C}$.

The ureas were prepared by adding the isocyanate to aniline (2 ml) in dry benzene (15 ml).

Pyrolysis of 1-Thioamido-2,4,6-triphenylpyridinium Tetrafluoroborates (Table 5).-The tetrafluoroborate (0.002 mol) and 2,4,6-triphenylpyridine (3 g) were mixed, dried at $40^{\circ} \mathrm{C}$ and 5 mmHg , and heated at $110-150{ }^{\circ} \mathrm{C}$ and 0.2 mmHg . The nitrile distilled or sublimed and was characterised as in Table 3.

We thank the S.R.C. for a Studentship (to J. L.).
[7/2260 Received, 28th December, 1977]

REFERENCES

${ }^{1}$ Part 18, see ref. 19
${ }^{2}$ Preliminary communication, J. B. Bapat, R. J. Blade, A. J. Boulton, J. Epsztajn, A. R. Katritzky, J. Lewis, P. Molina-Buendia, P.-L. Nie, and C. A. Ramsden, Tetrahedron Letters, 1976, 2691
${ }^{3}$ E. S. Wallis and J. F. Lane, Org. Reactions, 1946, III, 267.
${ }^{4}$ E. C. Franklin, Chem. Rev., 1934, 14, 219.
${ }^{5}$ P. A. S. Smith, Org. Reactions, 1946, III, 337.
${ }^{6}$ Part 6, A. R. Katritzky, J. B. Bapat, R. J. Blade, B. P. Leddy, P.-L. Nie, C. A. Ramsden, and S. S. Thind, J.C.S. Perkin I, 1979, 418; Part 17, A. R. Katritzky, U. Gruntz, A. A. Ikizler, D. H. Kenny, and B. P. Leddy, J.C.S. Perkin I, 1979, 436; Part 16, A. R.Katritzky, N. F. Eweiss, and P.-L. Nie, J.C.S. Perkin I, 1979, 433.
${ }^{7}$ M. S. Gibson and A. W. Murray, J. Chem. Soc., 1965, 880.
${ }^{8}$ R. F. Smith and P. C. Briggs, Chem. Comm., 1965, 120.
${ }^{9}$ S. Wawzonek and E. Yeakey, J. Amer. Chem. Soc., 1960, 82 5718; W. S. Wadsworth jun., J. Org. Chem., 1966, 31, 1704.
${ }^{10}$ S. Wawzonek and R. C. Gueldner, J. Org. Chem., 1965, 30, 3031; S. Wawzonek and J. G. Stephanie, ibid., 1971, 36, 2467.
${ }^{11}$ H. P. Benecke and J. H. Wikel, Tetrahedron Letters, 1972, 289.
${ }^{12}$ W. J. McKillip, L. M. Clemens, and R. Haugland, Canad. J. Chem., 1967, 45, 2613.
${ }^{13}$ E. Kameyama, Y. Minegishi, and T. Kuwamura, Yukagaku Zasshi, 1969, 18, 897 (Chem. Abs., 1970, 72, 45, 292z).
${ }_{14}$ W. J. McKillip, E. A. Sedor, B. M. Culbertson, and S. Wawzonek, Chem. Rev., 1973, 73, 255.
${ }^{15}$ M. Ikeda, N. Tsujimoto, and Y. Tamura, Org. Mass. Spectrometry, 1971, 5, 61 (Chem. Abs., 1971, 74, 124394d); Y. Tamura, H. Ishibashi, N. Tsujimoto, and M. Ikeda, Chem. and Pharm. Bull. (Japan), 1971, 19, 1285.
${ }^{16}$ J. Epsztajn, E. Lunt, and A. R. Katritzky, Tetrahedron, 1970, 26, 1665.
${ }^{17}$ T. Okamoto, M. Hirobe, C. Mizushima, and A. Osawa, J. Pharm. Soc.Japan, 1963, 83, 308 (Chem. Abs., 1963, 59, 5130b); T. Okamoto, M. Hirobe, and A. Ohsawa, Chem. and Pharm. Bull. (Japan), 1966, 14, 518.
${ }^{18}$ M. Lempert-Sréter and K. Lempert, Acta Chim. Acad. Sci. Hung., 1970, 65, 443; 1976, 88, 189.
${ }_{19}$ A. R. Katritzky, J. Lewis, and P.-L. Nie, preceding paper.
${ }^{20}$ O. Buchardt, C. L. Pedersen, U. Svanholm, A. M. Duffield, and A. T. Balaban, Acta Chem. Scand., 1969, 23, 3125.
${ }^{21}$ D. J. Harris, M. T. Thomas, V. Snieckus, N. Friedman, K. Shaumburg, K. B. Tomer, and O. Buchardt, Canad. J. Chem., 1977, 55, 56; D. J. Harris, M. T. Thomas, V. Snieckus, and E. Klingsberg, ibid., 1974, 52, 2805.
${ }_{22}$ T. Okamoto, M. Hirobe, and R. Sato, J. Pharm. Soc. Japan, 1967, 87, 994.
${ }^{23}$ R. Neidlein and P. Witerzens, Arch. Pharm., 1976, 309, 649.
${ }^{24}$ (a) T. L. Davis and H. W. Underwood jun., J. Amer. Chem. Soc., 1922, 44, 2595; (b) T. L. Davis and K. C. Blanchard, ibid., 1923, 45, 1816; (c) F. Kurzer, J. Chem. Soc., 1949, 2292; (d) M. P. Gerchuk, D. A. Livshits, and S. Z. Taits, Zhur. obshchei Khim., 1950, 20, 924 (Chem. Abs., 1950, 44, 9444d).
${ }^{25}$ S. S. Washburne and W. R. Peterson jun., Synth. Comm., 1972, 2, 227; G. Krow, K. M. Damodaran, E. Michener, S. I. Miller, and D. R. Dalton, ibid., 1976, 6, 261.
${ }^{26}$ T. Shioiri, K. Ninomiya, and S. Yamada, J. Amer. Chem. Soc., 1972, 94, 6203.
${ }_{27}{ }^{\prime}$ W. Kirmse, Chem. Ber., 1960, 93, 2353; P. A. S. Smith and D. H. Kenny, $J . O_{r g}$. Chem., 1961, 26, 5221.
${ }^{28}$ W. Dilthey and H. Dierichs, J. prakt. Chem., 1935, 144, 1 (Chem. Abs., 1936, 30, 460 ${ }^{9}$).

